Motivation and Background Upgrades to GS2 Benchmarks Other Studies Conclusions ## Upgrades of GS2 for stellarators and initial gyrokinetic results Jessica A. Baumgaertel¹ WPI Workshop, Vienna, Austria April 7th, 2011 G. W. Hammett, D. R. Mikkelsen, et al ¹Princeton University, Princeton Plasma Physics Laboratory ← ♠ → ← ♣ → ♠ ♣ | ♣ | ♣ | ◆ △ ◆ - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work #### Turbulence should be studied in stellarators - Modern stellarators are optimized for neoclassical transport - Turbulence could become more important - Stellarators have large parameter space of configurations - opportunity for optimizing for turbulence ### Gyrokinetics in stellarators is an active area of research - FULL: Linear eigenvalue code - G. Rewoldt compared nine configurations for linear stability (PoP 12, 102512 (2005)) - Also simulated studied ITG and TEM stability in an equilibrium produced as part of the NCSX design: QAS3-C82 (PoP 6, 4705 (1999)) - GENE: Nonlinear code - F. Jenko and P. Xanthopoulos have linearly and nonlinearly studied the ITG mode in W7-X plasmas (PoP 14, 042501 (2007), PRL 99, 035002 (2007)) - H. Mynick and P. Xanthopoulos are using GENE to investigate optimization of stellarators for turbulent transport (PRL 105, 095004 (2010)) - GKV-X: nonlinear code, adiabatic electrons - Watanabe, Nunami, Sugama, Tanaka simulating LHD plasmas (Plasma and Fusion Research 6, 1403001 (2011)) ## GS2 was briefly used for stellarators a few years ago - Original studies by Belli/Dorland: FULL/GS2 NCSX benchmark - needed reproduction to resolve questions of geometry normalizations - my initial thesis research - Guttenfelder: HSX linear studies - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work # Initial W7-X studies revealed numerical instability/bug related to complicated |B| structure ## The grid generator should require coupled θ and λ grids • Original velocity integral required a $v_{||}/v = \sqrt{1 - \lambda B(\theta)} = 0$ at each theta point (where $\lambda = \mu/E = 1/B_{tp}$). # GS2 grid generator improperly handles pitch angles for complicated geometries # Trapped particle treatment now allows for these more flexible grids - Allows for multiple "totally trapped pitch angles" in a single well - Treats barely passing or barely trapped particles consistently - Fixed bugs in handling the boundary conditions for trapped particles at turning points. - Now allows the pitch angle grid to be independent of the spatial theta grid. - $v_{||}/v = 0$ grid point not required at each theta grid point. - All of these changes are buried in GS2's implicit solver - Currently writing a replacement for rungridgen to be more robust. - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work ## New 3D geometry builder chain for GS2 - Starting from a VMEC 3D MHD equilibrium. . . - Historically: - Terpsichore - Boozer coordinate transformation - VVBAL - Single flux tube ballooning coefficients - Radial coordinate: normalized poloidal flux - New: - GIST² - Used for GENE 3D geometry - Radial coordinate: either poloidal or toroidal flux - Tested: reproduces VVBAL geometry - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work #### GS2 vs. FULL - In 2000, E. Belli and W. Dorland conducted the first linear GS2 studies with non-axisymmetric geometries (NCSX QAS3-C82) - My initial thesis research was redoing the study - troubleshooting geometry chain, reproducing geometry input - bug fixes (Guttenfelder) - clarifying definitions of parameters - re-benchmarking with the modern GS2 - newer energy grid - my trapped particle modifications - Still matches! - results will be published soon ## NCSX QAS3-C82: 990 θ and 90 λ points • $$s = 0.875$$, $\alpha = \pi/3$, $\theta_0 = 0$ #### Test case: ITG with kinetic electrons - Radial variable: Ψ_n - $s = \Phi_T/\Phi_0 = 0.875$: very near the edge - q = 2.118 - $T_i/T_e = 1.0$ - $a/L_T = 39.288$ - $a/L_n = 13.096$ - a = 0.352m - delt = 0.005 - \bullet Time: linear run with 1 k_y about 7 minutes with 24 processors ## GS2 and FULL agree well in lpha and $heta_0$ scan - $\alpha = \zeta q\theta$ scan held $\theta_0 = 0$ - θ_0 scan held $\alpha = 0$ ## GS2 and FULL agree well in $k_y \rho_i$ scan ## Ti/Te agreement improved with modern GS2 - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input #### Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work ## GS2/GENE NCSX-Sym matches with tokamak precision #### Tokamak (PoP 15, 122108 (2008)): #### NCSX-Sym benchmark tests 3D geometry chain ## NCSX-3D Geometry Coefficients: 990 θ and 51 λ points • Future work: reduce θ resolution by bounce/orbit averaging coefficients over θ and/or λ grid? #### Test case: ITG with adiabatic electrons - Radial variable: \sqrt{s} - $s = \Phi_T / \Phi_{Ta} = 0.515$ - q = 2.162 - a = 0.345m - $T_i/T_e = 1.0$ - $a/L_T = 3.0$ - $a/L_n = 0.0$ - *delt* = 0.005 - \bullet Time: linear run with 9 k_y s, about 4 minutes with 48 processors ## GS2 and GENE agree well for NCSX-3D $k_y \rho_i$ spectrum ## W7-X Geometry: 1464 θ and 33 λ points #### Test case: ITG with adiabatic electrons - Radial variable: \sqrt{s} - $s = \Phi_T/\Phi_{Ta} = 0.2$ - averaged minor radius a = 0.5m - $T_i/T_e = 1.0$ - $a/L_T = 3.0$ - $a/L_n = 0.0$ - delt = 0.005 - \bullet Time: linear run with 7 k_v s, about 20 minutes with 48 processors ## GS2 and GENE agree well for W7-X $k_y \rho_i$ spectrum - Motivation and Background - 2 Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work #### Initial EM results - Motivation and Background - 2 Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work #### **Parameters** - NCSX eqs3.01.01: same geometry as GS2/GENE linear study - 292 theta gridpoints - 15 trapped pitch angles - 8 k_y , 21 k_x - Time: \sim 27 hours on 48 processors #### First GS2 nonlinear stellarator results #### First GS2 nonlinear stellarator results - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work ## Appropriate metric of comparison between devices: χ_{ITER} ? • χ_{ITER} is invariant to $\rho = F(\rho')$ with the ITER standard definition: • $$\frac{3}{2} \frac{\partial}{\partial t} (nT) = \frac{1}{V'} \frac{\partial}{\partial \rho} [V' \langle |\nabla \rho|^2 \rangle \chi_{ITER} n \frac{\partial T}{\partial \rho}] + P$$ # Better metric of comparison between devices: $\langle |\nabla \rho|^2 \rangle \chi_{ITER}$? • Because $\frac{1}{\tau_E} \sim \langle |\nabla \rho|^2 \rangle \chi$, a better metric is $\langle |\nabla \rho|^2 \rangle \chi$: - ∇T increases locally, $|\nabla \rho|^2$ increases, decreasing τ_E . - This isn't invariant to ρ , so should use same definition: $\rho = \sqrt{\Phi_T/\Phi_{Ta}}$ (GENE standard, GS2 able), $\rho \in [0,1]$. # Even better metric of comparison between devices: $R\langle a\kappa\rangle\langle |\nabla\rho|^2\rangle\chi_{ITER}$? - Smaller $\langle |\nabla \rho|^2 \rangle \chi$ may mean much larger device, which could be undesirable due to cost. - $\frac{\$}{Q} \sim \frac{S}{nT\tau_E} \sim \frac{R\langle a\kappa \rangle \langle |\nabla \rho|^2 \rangle \chi_{ITER}}{\beta}$: roughly compensates for size and cost (inverse of bang per buck) - S =surface area - assume fixed β (for now) ## R/L_{Tcrit} preferred in tokamak comparisons - $R/L_{Tcrit-TOK} \approx 2(1 + \frac{T_i}{T_e}) \approx 4$ - $T_0 = T_a e^{\int_0^a dr/L_T} \approx T_a e^{a/L_T} = T_a e^{\frac{a}{R}\frac{R}{L_T}} \approx T_a e^{4\frac{a}{R}}$ - Smaller aspect ratio increases T_0 - Higher R/L_{Tcrit} would also improve T_0 - Stability is determined by R/L_T , but performance depends on a/L_T . $$\bullet \ \frac{a}{L_T} \equiv -\frac{1}{T} \frac{\partial T}{\partial \rho}$$ ## Higher R/L_{Tcrit} might be offset by narrower plasma - ullet This stellarator has a higher R/L_{Tcrit} than the tokamak but a smaller T_0 . - R isn't as meaningful in stellarators ## One could use: $R\langle a\kappa \rangle \langle |\nabla \rho|^2 \rangle \chi_{ITER}$ vs. a/L_T instead - $R\langle a\kappa\rangle\langle |\nabla\rho|^2\rangle\chi_{ITER}$ captures heat transport and approximate cost for size and complexity - $\frac{a}{L_T} \equiv -\frac{1}{T} \frac{\partial T}{\partial \rho}$ determines performance - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work ## Summary - GS2 has been upgraded to allow for more flexible grids - New geometry framework for 3D GS2 simulations (GIST) was initially tested - Linear benchmark with FULL was reproduced with modern GS2 - Successfully linearly benchmarked GS2 and GENE on initial ITG, adiabatic electron NCSX and W7-X cases - ullet Demonstrated the need to include $\delta B_{||}$ in high eta studies - Initial nonlinear NCSX studies are promising - We discussed best comparison metrics between fusion devices - Motivation and Background - Upgrades to GS2 - Trapped Particle Treatment - Geometry Input - 3 Benchmarks - GS2 vs. FULL Benchmark - GS2 vs. GENE benchmark - Other Studies - Electromagnetic - Nonlinear - How do we compare different devices? - Conclusions - Summary - Future Work #### Goals - Complete new grid generator - Further benchmarks with GENE in NCSX and W7-X geometries (ITG kinetic electron, collisions, EM, nonlinear) - \bullet Extend nonlinear turbulence studies: reverse shear and shaping effects on ITG/TEM/ETG